pmll Documentation
Release 0.2.2

Kirill Paviov

July 09, 2014

Contents

1 Getting started 3
1.1 Install o e e e e 3
1.2 Data StruCtures v v v v v i e e e e e e e e e e e e e e e e e e e 3
1.3 Feature Generation v it i i e e e e e e e e e e e e e e e 5
2 Indices and tables 7

pmlil Documentation, Release 0.2.2

Contents:

Contents 1

pmll Documentation, Release 0.2.2

2 Contents

CHAPTER 1

Getting started

1.1 Install

To install pmll use pip:

pip install pmll

1.2 Data structures

There are two main data structures in the package: feature and dataset.

1.2.1 Feature

Feature class is used to describe objects. Each feature has title and type.

Features are in feature space, they have title and optional type. Type is used to define possible operations with features,
it could be lin, nom, bin, rank.

In [1]: from pmll.feature import Feature, FeatureNom, Featurelin

In [2]: from collections import namedtuple

In [3]: Parallelepiped = namedtuple ("Parallelepiped", ["colour", "length", "height", "width"])
In [4]: cube = Parallelepiped("red", 2, 2, 2)

Lets define features for new object: colour is nominal, others are linear.

In [5]: f = FeatureNom("colour")
In [6]: f (cube)
Out[6]: "red’

In [7]: f1, f2, f3 = FeatureLin("length"), FeatureLin("height"), FeatureLin ("width")

It is possible to multiply linear features, for example square equals length times height

In [8]: square = fl1 * £f2
In [9]: square.title
Out[9]: "heightxlength’

In [10]: square (cube)
Out [10]: 4.0

pmll Documentation, Release 0.2.2

In [11]: volume = square x f3
In [12]: volume.title
Out[12]: "heightxlengthxwidth’

In [13]: volume (cube)
Out[13]: 8.0

There are trigonometric functions available

In [14]: from pmll.feature.operations import sin, cos, tan
In [15]: flsin = sin(fl)

In [16]: flsin(cube)

Out[10]: 0.9092974268256817

1.2.2 Data

Data class is used to represent objects using their features.

In [1]: from pmll.data import Data

In [2]: from pmll.feature import Featurelin

In [3]: d = Data([[ol 1! 2]/ [31 1/ 41! [721 O/ 11! [21 71/ 71]/ [Ol O/ 21])

Data is used for objects manipulation. It also provides some statistical information, such as Variance inflation factor:
In [4]: d.vif

Out[4]: [0.22780361757105938, 0.5469767441860465, 0.34108527131782956]

and for each feature there is basic statistical information:

In [5]: d.stat

Oout [5]:

{<class ’"pmll.feature.models.FeaturelLin’>: f0 (scale=lin): {'max’: 3.0,
"mean’: 0.59999999999999998,
"min’: -2.0,

"std’: 1.7435595774162693,
"var’: 3.04},

<class ’'pmll.feature.models.FeaturelLin’>: fl (scale=lin): {’max’: 1.0,
"mean’: 0.20000000000000001,
"min’: -1.0,

"std’: 0.74833147735478833,
"var’: 0.56000000000000005},

<class ’"pmll.feature.models.FeaturelLin’>: f2 (scale=lin): {'max’: 4.0,
"mean’: 1.6000000000000001,
'min’: -1.0,

"std’: 1.6248076809271921,
"var’: 2.64000000000000011}}

Data object could be converted to numpy.matrix if features are linear:

In [6]: d.matrix

out[6]:

matrix([[O., 1., 2.1,
[3., 1., .1,
[72-1 O'I -]l
[2., -1., -1.1,
[0., 0., 2.11)

To extend data objects, add them directly to data.objects. To extend data features, it is possible to sum data objects.
Note, that data objects sould have the same number of objects and not intersected features.

4 Chapter 1. Getting started

pmll Documentation, Release 0.2.2

In [7]: d2 = Data([[3], [7], [11, [-2], [4]1], features=[FeatureLin(’£3’)])
In [8]: d =d + d2

1.2.3 Quality metrics calculation
In this part we use the same data object d as before. We will predict one feature using others and calculate quality
metrics. In terms of data mining problem, it would be quality measure on train set.

In [9]: X, Y = d[:, :-1].matrix, d[:, —-1:].matrix

We use least squares method here:

In [10]: w = (X.T » X) #*% (-1) = X.T = Y
In [11]: w
Out[11]: matrix([[0.07751938], [-0.02325581], [1.7131782911)

Prediction for train set would be

In [12]: prediction = X * w
In [13]: prediction

Out [13]:

matrix ([[3.403100787,
[7.0620155 7,
[1.55813953]7,
[-1.53488372]7,
[3.42635659]11])

Lets measure quality of prediction of train set.

In [14]: from pmll.metrics.base import QualityMeasurerLinear

In [15]: g = QualityMeasurerLinear ()

In [16]: for p, y in zip(prediction.tolist (), Y.tolist()):
e g.append(p[0], y[0])

In [17]: (g.mse, g.mae, g.rmse, g.nrmse, J.cvrmse)
Oout [17]:

0.20465116279069767,

41240310077519365,

4523838666339657,

050264874070440634,

(
0
0
0
0.17399379485921757)

1.3 Feature Generation

Feature generation is sweet with pmll. Unlike other libraries, pmll works with features, rather than data matrix
columns. It allows to perform operations in feature space and then get objects for current data features.

Polynomial regression
Consider function as data object. First feature is x values, second feature is y values.

In [1]: from pmll.data import Data

In [2]: from pmll.feature import Featurelin

In [3]: import math

In [4]: d = Data([[x, math.sin(x)] for x in range(5)], features=[Featurelin(’'x’), FeatureLin('y’)])

1.3. Feature Generation 5

pmll Documentation, Release 0.2.2

Problem is to predict y value for x=4 using previous values. Linear model without feature generationis y = x * w

In [5]: X, Y = d.matrix[:-1, :-1], d.matrix[:-1, -1:]

In [6]: w = (X.T * X) ** (1) » X.T * Y

In [7]: error = (d.matrix[-1:, :-1] » w — d.matrix[-1:, —-1:]) ** 2
In [8]: error

Out[8]: matrix ([[2.68232763]11])

Lets generate features. Start with constant, so, model isy =w_0+x * w_1 or (1, x) * (w_0, w_1)

In [9]: d.features = [d.features[0] *+ 0] + d.features
In [10]: d.matrix

Out [10]: matrix([[1 , 0. , 0. 1,
[1 , 1. , 0.84147098],
[1 ;2. , 0.909297437,
[1 ;3. , 0.141120017,
[1 4. -0.7568025 1)

In [11]: X, Y = d.matrix[:-1, :-1], d.matrix[:-1, -1:]

In [12]: w = (X.T » X) #*% (-1) = X.T = Y

In [13]: error = (d.matrix[-1:, :-1] » w — d.matrix[-1:, —-1:]) *x 2
In [14]: error

Out[14]: matrix ([[1.8294489]11)

Finally we use modely =w_3 *x" 3+ w_2*x2 +w_l *x+w_0

In [15]: d.features = d.features[:2] + [d.features[1l] #** 2, d.features[l] »* 3] + d.features[2:]
In [14]: error
Out[14]: matrix ([[0.5907737711)

6 Chapter 1. Getting started

CHAPTER 2

Indices and tables

* genindex
* modindex

e search

	Getting started
	Install
	Data structures
	Feature Generation

	Indices and tables

